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Abstract. CERN is considering the use of crab cavities for its future luminos-
ity upgrade. Compact crab cavities are being designed and a thorough study
of the impact of the cavity is needed. In this paper, we study the effects of

the nonlinear electromagnetic fields in the simulation of the ODU JLab model
at 26 GeV. An interpolation method is introduced and simulation results of
several beam parameters with or without a crab cavity are compared.

1. Introduction

1.1. Motivation. In the LHC, two beams have to travel at an angle near the in-
teraction point to avoid parasitic collisions. However, it reduces the cross-sectional
area of the interaction, thus reducing the luminosity.

The idea of crab crossing was first proposed by R. Palmer in an attempt to
enable effective head-on collisions in linear accelerators ([7]). Shortly afterwards,
K. Oide and K. Yokoya proposed a scheme for storage-ring colliders ([6]). Crab
crossings have been implemented at KEKB in 2007 and succeeded in improving the
luminosity. Various laboratories worldwide are devoted to the design and research
of crab cavities.

According to K. Ohmi at KEK, crab cavities have the potential to boost the
beam-beam parameter higher than 0.15. At the same time, it alleviates the re-
quirement to substantially increase the beam bunch intensity or reduce emittance,
which can usually be very challenging and problematic.

CERN is considering the use of crab cavity during the LHC’s next luminosity
upgrade, to enable a larger crossing angle without luminosity loss. However, existing
models can only fit in one site of LHC (IR4). Accelerator physicists worldwide have
decided to focus on designing compact crab cavities in the recent years.
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1.2. Research objectives. Despite its alluring prospects, crab cavities are not
without their problems. Even at KEKB where crab cavities has first succeeded, the
actual luminosity improvement is still not clear and under tuning. One potential
problem related to our research is that the EM fields inside a crab cavity is not
linear. The nonlinear fields may give rise to subtle changes in the beam parameters,
resulting in particle loss and degradation of luminosity.

The goal of this project is to study the possible negative effects of the ODU-JLab
cavity design on the tune footprint, dynamic aperture and emittance of the beam
using simulations at the energy level of 26 GeV. We have obtained the numerical
values of discrete electrical and magnetic fields of the ODU-JLab model from CSD
Microwave Studio simulations. EM fields anywhere inside the cavity are obtained
through interpolating the known data. Equations of motion of particles inside the
cavity can be obtained by combining the equation of Lorentz force and the EM
fields, thus providing a numerical way of calculating the crab cavity kicks.

2. JLab cavity design

We particularly research on the ODU-JLab model. In its simplest form, it is
a parallel bar cavity with TEM mode. The cavity intended for LHC has to be
much different from the KEKB model. Apart from the apparent size constraint, a
lot of important specifications are also different, such as frequency, horizontal and
vertical crossing and electric field. A lot of redesigning will be needed to fit the
cavity into the LHC.

Figure 1. Comparison of cavity specifications between KEKB and LHC

The original cavity design has a rectangular shape, but a more recent design
took the cylindrical shape instead.
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Figure 2. Initial design of ODU-JLab cavity with round parallel bars (left)

Figure 3. Present (August 2011) form of the cavity evolved to mini-
mize higher order modes (right)

3. The algorithm

3.1. Crab cavity kicks. EM fields in a TEM resonance structure are

E(x, y, σ, t) = E(x, σ) cos

(

2πy
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)

sin(ωt),
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× ŷ sin

(

2πy

λ

)

cos(ωt)

where Z0 =
√

ǫ/µ.
In an analytical model as in [7], consider two infinite rods parallel to the y-axis

with uniform charge density q, and crossing the (x, σ) plane at x = ±a, σ = 0.
The potential is given by
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q
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The electric fields are
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Lorentz’s force is given by dp/dt = 1

p0

q(E+ v ×B). Combined with v = βcσ̂

we obtain the equations of motion of a particle with longitudinal distance z from
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the synchronous particle as
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The reference particle passes through the cavity gap in time t ∈ nT0+(−Lσ/2βc, Lσ/2βc),
where Lσ is the cavity length along the σ direction.

No analytical formula for crab cavity kicks is available for this ODU-JLab model
design. We have to obtain it via numerical integration.

In the actual problem, the fields are not identical to the prediction of this analyt-
ical model. However, the strength of field components are obtained via numerical
simulations by an CSD Microwave Studio design. Along the σ-direction (the direc-
tion of propagation), Ex, Ey and Hz are symmetric about the origin while Ez, Hx

and Hy are antisymmetric. The symmetric fields will bend the particles trans-
versely and also cause helical motion along the σ axis. The net effect is small along
the longitudinal direction of the anti-symmetric fields.

3.2. Interpolation. From experience, quadratic interpolation is usually sufficient
for EM field data. At the same time, a lower order interpolation minimizes the side
effect of oscillations in the function value between tabulated points. Therefore we
are adopting an algorithm that is a slight variation of quadratic interpolation. A
description of the algorithm can be found in Dhatt and Touzot, The Finite Element

Method Displayed.
We cover the entire domain with cubes that contains 3 grid points along each

direction, then choose 20 grid points in each cube (discarding the grid points at the
center of each face and in the center of the cube). The grid spacings are normalized
to 1, therefore with the coordinate origin at the center, each axis is in the range
−1 < x, y, z < 1.

At each point of interpolation,

f(x, y, z) =

20
∑

i=1

ciNi(x, y, z, ξi, ηi, ζi)

where the constants ci are found from f(xi, yi, zi) = ciNi(xi, yi, zi, ξi, ηi, ζi) and
Ni’s are polynomial functions which change from site to site.

The functions Ni are found in the following way.
- Nodes at the vertices:
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Figure 4. Plot of the cavity kicks: (a)-(b) horizontal kicks, (c)-(d)
vertical kicks, and (e)-(f) longitudinal kicks. In this plot, β = 1, ω = 400
MHz, the cavity gap Lσ = 0.5m, the bar position a = 0.1m, and y = 0
are applied ([4]).
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Node i A B C D E F G H
ξi -1 1 1 -1 -1 1 1 -1
ηi -1 -1 1 1 -1 -1 1 1
ζi -1 -1 -1 -1 1 1 1 1

Ni =
1

8
(1 + ξix)(1 + ηiy)(1 + ζiz)(−2 + ξix+ ηiy + ζiz)

-Nodes on the yz-plane:

Node i Q R T S
ξi 0 0 0 0
ηi -1 1 -1 1
ζi -1 -1 1 1

Ni =
1

4
(1− x2)(1 + ηiy)(1 + ζiz)

-Nodes on the xy-plane:

Node i I J K L
ξi 1 -1 1 -1
ηi 0 0 0 0
ζi -1 -1 1 1

Ni =
1

4
(1 + ξix)(1− y2)(1 + ζiz)

-Nodes on the xz-plane:

Node i M N O P
ξi -1 1 1 -1
ηi -1 -1 1 1
ζi 0 0 0 0

Ni =
1

4
(1 + ξix)(1 + ηiy)(1− z2)

4. Results

4.1. Interpolation. The interpolation results are compared to Mathematica 3D
plot as a benchmark test. The comparisons are shown below (Mathematica interpo-
lation is labeled “Field” and plots of interpolated fields are labeled “Interpolation”).

Each 3D graph is obtained by fixing one of the variables x, y or z to −0.01, and
plot the respective field component against the other two axes. The value −0.01 is
chosen such that it is the nearest grid to the origin, where we are most interested
in since the particles travel near the origin (reference orbit).

Note that the graphs labeled with “Interpolation” cover only an octant of the
given domain. The known data has a symmetric domain and is mostly symmetric
or antisymmetric with all axes, with x and y ranging from −0.05m to 0.05m and
z ranging from −0.23m to 0.23m. The grid spacing along each direction is 0.01m
apart.

Since all field components have obvious symmetry or antisymmetry about the
origin and along axes due to the symmetric geometry of the cavity, it suffices to
check one octant of the domain. In fact, in order to generate a fine enough sample
of interpolation values, checking the whole domain is not even practical.

We take the octant where x, y and z are all negative (ranging from the minimum
value to 0) and take the step size as 1/8 of the grid spacing. Comparing the
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interpolation to the proper quadrant to the Mathematica graph, we see that they
match up quite well. When there is a discrepancy between the two algorithms, for
example Ex along the x-direction, it seems that our algorithm presents a smoother
field in this particular case.

Figure 5. Comparison between Mathematica interpolation (labeled
as ”fields”) and results of our interpolation scheme (labeled as ”inter-
polation”). Note that only one quadrant of the interpolated fields are
plotted.

4.2. Simulations. We use a beam-beam simulation program BBSIM to track par-
ticles through a model of SPS with all linear focusing fields and nonlinear fields,
and look for the change in beam parameters such as tune footprint, dynamic aper-
ture and emittance growth. We start with SPS simulation since a crab cavity will
first be tested at SPS. While the actual cavity has a TEM mode, the simulation
were done with a simpler TM model of the crab cavity. We expect to update the
program to accommodate simulations of a TEM cavity model in the future. The
crab cavity kicks are calculated analytically for a TM mode cavity, and the kicks
of a TEM cavity has to be calculated numerically in aforementioned ways.

The crab cavity parameters are
energy(GeV) voltage(GV) frequency(MHz) radius(m)

26 13× 10−4 400 0.433
A comparison of tune footprint, dynamic aperture and emittance is shown.
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Figure 6. Comparison between Mathematica interpolation (labeled
as ”fields”) and results of our interpolation scheme (labeled as ”interpo-
lation”) II.

The footprint is changed slightly when the crab cavity is turned on, but the
difference is almost negligible.

Dynamic aperture specifies the maximal range under which particles are stable.
Particles outside of the dynamic aperture will be lost.

No difference is seen in the dynamic aperture when the crab cavity is turned on
or off. Also note that no particle loss is observed up to the radius of 60σ, where
particularly, the radius of the beam pipe is around 20σ. Therefore there is basically
no particle loss with or without the crab cavity. This is possible since the sextuple
fields are weak and the beam is fine tuned to avoid resonances.

The emittance is tracked up to 106 turns. There is some difference with or
without the crab cavity, but it is bounded in the same vicinity.

5. Conclusion

We have implemented a quadratic interpolation scheme and compared it to
Mathematica results. The interpolated value is mostly smooth over the domain,
and the algorithm is validated by comparison with Mathematica interpolation. This
interpolation will be implemented in the tracking code BBSIM and should be valid
for any model of a crab cavity.

In the simulation of TM mode cavity at 26 GeV in the SPS, we see precisely the
same (and very large) dynamic aperture, very similar tune footprints and similar
transverse emittance. No significant change of tune footprints or emittance growth
is found with the implementation of the crab cavity.
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Figure 7. Comparison between Mathematica interpolation (labeled
as ”fields”) and results of our interpolation scheme (labeled as ”interpo-
lation”) III.

Figure 8. Tune footprint with crab cavity on (red) and off (green).
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Figure 9. Dynamic aperture under TM mode (identical with or with-
out crab cavity).

Figure 10. Emittance along x-axis up to 106 turns with crab cavity
on (red) and off (green).

In future we plan to continue simulation with the SPS accelerator using our
interpolation scheme with a new TEM mode cavity at various energies. We might
also do simulations for the LHC if time allows.
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Figure 11. Emittance along y-axis up to 106 turns with crab cavity
on (red) and off (green).
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